June 8th, 1876.

Prof. H. J. S. SMITH, F.R.S., President, in the Chair.

Dr. Lindemann and Mr. W. S. W. Vaux were present as visitors.
Mr. Kempe spoke on "A general Method of Describing Plane Curves of the nth degree by Linkwork." Prof. Cayley and Mr. Roberts also spoke on the snbject. Mr. Roberts then gave an accoint of a "Further Note on the Motion of a Plane under certain Conditions." Mr. Walker communicated a short Note "On the reduction of the Equation ($\mathrm{U}=0$) of the Plane Nodal Cubic to its canonical formlax ${ }^{3}+b y^{3}+6 m x y z$.". It was shown that the equation to the three lines of reference is $\mathrm{TV}+8 \mathrm{SH}=0$, and that the equation to $(x y)$ is $\mathrm{L}^{3}-\mathrm{MN}=0$, where $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are the factors of TU-24SH. The quotient of TU +8 SH by $\mathrm{L}^{2}-\mathrm{MN}$ will therefore give the third line z, which is the real axis of inflexion, the other two being the nodal tangents.
Prof. Cayley described a surface, depending apon the sinusoid, which was being constructed for him at Cambridge. The Chairman made a few remarks in connection with M. Hermite's recent Note on a Theorem of Eisenstein's.

On a General Method of describing Plane Curves of the ris degree by Linkwork. By А. B. Кемее, B.A.
[Read June 9th, 18i6.]
Lemma I.-The Reversor.-Let OEßa (Fig. 1) be the linkage known as the contra-parallelogram, $\mathbf{O \xi}$ being equal to βa, and $\mathrm{O} a$ to $\xi \beta$.

Make ay a third proportional to 0ξ and $0 a$, and add the links 0δ, equal to $a \gamma$, and $\delta \gamma$, equal to $0 a$.

Then the figure Oay δ is a contran parallelogram similar to $0 \xi \beta a$; and the angle $\xi 0 a$ is equal to the angle $\delta O a$.

Thus, if $\mathrm{O} \xi$ be made to make any angle with $\mathrm{O} a$, $\mathrm{O} \delta$ will make the same

Fig. 1. angle with $\mathrm{O} \alpha$ on the other side of it."

[^0]Lemma II.-The Multiplicator. -In the linkage in Lemma I., if Oa make an angle θ with 0ξ, 0δ will make an angle 2θ.

Now, if (Fig. 2) we add two links $O \eta, \eta \in$ to the linkage Oar δ, in the same manner as we added the links $0 \delta, \delta \gamma$ to the linkage $0 \xi \beta a$, we shall get a link O_{η}

Fig. 2. making an angle 30 with 0ξ; and, continuing the construction, we shall get a link 0ρ making anangle $r \theta$ with 0ξ, where r is any integer.

Lemma III.-The Additor.-By means of the Reversor (Lemma I.) let the links $0 \xi, 0 \pi$ (Fig. 3) be made to make equal angles on each side of the link 0λ. Similarly, let the links $0 r, 0 r$ be made to make equal angles on each side of 0λ.

Then the angle $\pi O r$ equals the angle $\sigma O \xi$; thus, if the angle $\sigma O \xi$ equals 80

Fig. 3. and the angle $\tau \mathcal{O}$ equals $r \phi$, the angle $\pi 0 \xi$ equals $r \phi+s \theta$; or if the angle $\sigma 0 \xi$ equals $s \theta$ and the angle $\pi 0 \xi$ equals $r \phi$, then the angle $\tau O \xi$ equals $r \phi-s \theta$. Also, if the link $0 \pi^{\prime}$ be fixed to $\mathrm{O} \pi$ (or Or_{r}) so as to make an angle α with it, then the angle $\pi^{\prime} O \xi$ equals $r \phi+s \theta \pm a$ (or $r \phi-s \theta \pm a$).

Lemma IV.-The Translator.-If O^{\prime} ' be a link making any angle with $\mathrm{O} \xi$ (Fig. 4), and if the two linkage parallelograms $0 \pi^{\prime} \mu \nu, \mu \nu \kappa \zeta$ be constructed, it is clear that the link $\kappa \zeta$ is equal and parallel to $O \pi^{\prime}$, but is otherwise free to assume any position.

Fig. 4.

Let $\phi(x, y)=0$ be the equation to any plane carve of the $n^{\text {th }}$ degree, and let P (Fig. 5) be any point on the curve.

Construct the linkage parallelogram \mathbf{Y} OAPB, in which

$$
\begin{aligned}
& \mathrm{OA}=\mathrm{BP}=a, \\
& \mathrm{OB}=\mathrm{AP}=b ;
\end{aligned}
$$

and let the angle $A O X=\theta$ and the angle $B O X=\phi$.

Fig. \quad.

Then

$$
\begin{aligned}
& x=a \cos \theta+b \cos \phi \\
& y=a \cos \left(\theta-\frac{\pi}{2}\right)+b \cos \left(\phi-\frac{\pi}{2}\right)
\end{aligned}
$$

Substitute these values of x and y in $\phi(x, y)$, expand and convert powers of cosines into cosines of multiple angles, and then the products of cosines into the cosines of the sums and differences of angles; we shall then get

$$
\phi(x, y)=\Sigma[A \cos (r \phi \pm s \theta \pm a)]+C
$$

where r and s are positive integers, and $a=\frac{\pi}{2}$ or 0 , and A and C are constants.

Now, by means of the Multiplicator and Additor, we may make a link OC make an angle COX, with $O X$ equal to $r \phi \pm s \theta \pm \alpha$.

If then $O C$ equals A, the distance of C from $O Y$ equals

$$
\mathrm{A} \cos (r \phi \pm s \theta \pm \alpha)
$$

Make then a series of links $\mathrm{OC}_{1}, \mathrm{OC}_{9}$, \&c. make angles with OX equal to the angles of the expression Σ [], and let their lengths be the coefficients of the corresponding cosines. Then the sum of the distances of $\mathrm{C}_{1}, \mathrm{C}_{3}$, \&c. from $O Y$ will equal

$$
\Sigma[\mathrm{A} \cos (r \phi \pm s \theta \pm \alpha)] .
$$

If then, by means of the Translator, we construct the chain of links $\mathrm{OP}_{1}, \mathrm{P}_{1} \mathrm{P}_{3}$, \&c. (Fig. 6), each link of which is parallel and equal to one of the links $\mathrm{OC}_{1}, \mathrm{OC}_{8}$, \&c.; the point P^{\prime}, the extremity of the chain, will be at a distance from OY equal to

$$
\begin{aligned}
\Sigma[\mathrm{A} \cos (r \varphi \pm s \theta & \pm \alpha)] \\
& =\phi(x, y)-C
\end{aligned}
$$

But since P lies on the curve, therefore $\phi(x, y)=0$;

Fig. 6.
therefore P^{\prime} lies at a constant distance - C from $O Y$; i.e., it describes the straight line

$$
x+C=0
$$

Conversely, if P^{\prime} be made by any of the known "exact parallel motions" to describe the straight line

$$
x+C=0,
$$

\mathbf{P} will describe the curve $\quad \phi(x, y)=0$.
It is hardly necessary to add, that this method would not be practically useful on account of the complexity of the linkwork employed, a necessary consequence of the perfect generality of the demonstration.

The method has, however, an interest, as showing that there is a way of drawing any given case ; and the variety of methods of expressing particular functions that have already been discovered renders it in the highest degree probable that in every case a simpler method can be found. There is still, therefore, a wide field open to the mathematical artist to discover the simplest linkworks that will describe particular curves.

The extension of this demonstration to curves of double curvature and surfaces clearly involves no difficalty.

Further Note on the Motion of a Plane under certain Oonditions.

By Samuel Roberts.

[Read June 9th, 1876.]
In my paper "On the Motion of a Plane under certain Conditions" (Proc., Vol. III., p. 286 et seq.), the movement was determined by the paths of two of the points of the plane over a coincident stationary. plane. I propose now to consider briefly two other elementary cases to which I referred at the close of my former paper, and relative to which I had then obtained some general results.

Those cases are: (1) when the motion is determined by the path of a point of the moving plane and by the envelope of one of its lines; (2) when the motion is determined by the envelopes of two of the lines of the nlane.

(A.) Line-directrix and Point-directrix.
 (1.) Locus of Points.

In the first case the problem is to determine the characteristics of the locus of a point P carried by a constant angle $A B C$ moving in its plane, so that while the side AB always touches a fixed curve, which I call the line-directrix, the other side moves with a fixed point \mathbf{C} always on another fixed curve, which I call the point-directrix. The two directrices are supposed to lie in the same plane as the moving angle.

I consider in the first instance a simple case, namely, when the linedirectrix is a point, and the point-directrix is a straight line.

The locus is a circular curve of the fourth order and sixth class, having usually two finite double points and another at infinity, where the point-directrix meets the line at infinity. The line-directrix is the focus formed by the circular asymptotes.

If, however, the apex B moves on the point-directrix, then the locus

[^0]: - This linkage, and the one next duscribed, were first given by me in the "Messenger of Mathematics," Vol. IV., pp. 122, 123, in a papur "On some now Linkages," i\$ 4 and 8.
 roL. vir.-no. 102.

